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LETTER TO THE EDITOR 

On the statistical mechanics of a discrete 4b4 chain 

Nikos Theodorakopoulos 
Fachbereich Physik der Universitat Konstanz, D-7750 Konstanz, Germany 

Received 26 March 1979 

Abstract. The configurational phenomenology of kinks and phonons is examined in the 
case of a discrete d4 chain in the displacive limit. Due to the existence of a lattice, an exact 
description of phonons in the whole Brillouin zone in terms of asymptotic phase shifts is not 
possible; it can be shown, however, by means of a simple numerical calculation that the 
change in the phonon density of states due to the presence of a kink obeys two simple sum 
rules. This enables us to justify a configurational phenomenology for the discrete lattice, 
which is in full agreement with the exact (transfer integral) results. 

The relevance of nonlinear excitations within the context of statistical mechanics has 
been demonstrated in the pioneering work of Krumhansl and Schrieffer (1975). Their 
exact calculation of the partition function of a one-dimensional 44 chain in the 
displacive limit enabled them to identify a part of the free energy with the gas of 
phonons and associate the rest with kinks which move, more or less freely, within the 
lattice. As recently pointed out by Bishop (1978) this rest can be described by (kink) 
configurational phenomenology, provided one includes the self-energy of the kink; the 
latter manifests itself partly in terms of a modified phonon density of states which can, in 
the continuum limit, be directly related to the asymptotic phase shifts suffered by 
phonon modes as they pass through the kink. However, the crucial step, namely the 
comparison between configurational phenomenology and exact (transfer integral) 
evaluation of the partition function, has only been performed in the continuum 
approximation, rather than in the physically relevant case of the displacive limit of a 
discrete system. 

The distinction between the two limits (Guyer and Miller 1978), of fundamental 
importance in itself, can be very simply demonstrated in practice. Thus, numerical 
simulations show that the kink will partly reflect phonons which are near the Brillouin 
zone edge. Moreover, even when the kink-phonon interaction is adequately described 
in terms of a phase shift, the latter’s magnitude turns out to be different from that 
predicted by continuum theory-except in the long-wavelength limit. Similar discrete 
lattice effects are observed in the space shift suffered by a kink when it collides with a 
phonon wave packet (Hasenfratz and Klein 1977, Theodorakopoulos 1979, 
Theodorakopoulos et a1 1979). 

It is the purpsse of this Letter to show by means of a simple numerical calculation 
that it is still possible, by an appropriate generalisation, to define and evaluate the kink’s 
self-energy for a discrete system in the displacive limit. The conclusions of configura- 
tional phenomenology remain valid without resort to the continuum limit. 
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We consider the Hamiltonian (Krumhansl and Schrieff er 1975) 
N 

H = mu;& [ad: + iC(4ii1- 4i)* + v(4i)I 
i = l  

of a linear chain of lattice constant 1, consisting of N atoms of mass m, coupled by 
harmonic springs and sitting on on-site double-well potentials V(4)  = (qb2 - 1)2/4. The 
displacement of the ith atom is given by U&, where f u o  define the minima of the 
double-well potential and oo their energy scale; time is measured in units of W O ’  and 

> 1 is the displacive parameter. Using the transfer integral technique, the free energy 
per unit length was found to bet  

(2) 0 1 / 2  F / L  = Fo/L  - ( l / p l ) [ ( l 2 / . n ) ( l / ~ ) p ~ ~ I  exp(-P&) 

where p = l /kaT,  L = N1, and 

(3) 

can be identified with the rest energy of a kink (see below) and Fo is the free energy of 
the gas of harmonic phonons of the discrete system (1) with V = 0. 

E, 0 =$(2c)”*muioi  

The equations of motion derived from equation (1) are 

i n  = c(4n -1 + 4n-l- 24n ) + 4 n  - 4:. (4) 

The nonlinear system (4) admits propagating kink solutions as long as the velocity does 
not become too large (Currie et a1 1977). In fact, the form of the static solution is well 
approximated by 

&(n) = tanh(n/(2c)”’] ( 5 )  

as long as > 1 (Koehler et a1 1975). Here we should perhaps point out that in general 
there will be two types of discrete lattice effects: those which arise as a result of a 
decrease in the displacive parameter (such as deviations of the kink form from 
equation ( 5 )  or pinning effects) and those inherent to discrete systems (such as the fact 
that a kink, no matter how extended, will still not be transparent to phonons with wave 
vector Q 5 ? ~ / l ) .  We shall only be concerned with the second type of effect, so that 
equations (5) and (3) are, for our purposes, sufficiently good approximations for the 
kink’s form and energy respectively. 

It is possible to perform linear stability analysis for the discrete system defined by 
equations (4) and (5). The ansatz 

(6 )  

n =  1 , 2 . .  . N (7) 

dn (7) = 4, (n) + U !? exp(-ifi17) 

leads to 
zU?) E + 4 n u j r i )  + u!il = A ( i )  . 

i n ,  

where 

and uo = U N + ~  = 0. Our objective is to follow the change in the eigenvalue spectrum of 

t Our transfer integral result corresponds to equation (30) of Bishop (1978). including the correction by a 
factor (n/e)” ’  (see footnote 34 of Bishop 1978). 
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equation (7) brought about by the presence of the kink. In the absence of the kink we 
have 9+ 9’’ with 

4:’’ = -2. (8’) 
We may now form the Sturm sequence {Dn(A)} for n = 0 , l  . . . N, defined by Do(A) = 1, 

(10) 

and determine the eigenvalue spectrum of either 9 or 9(’’ by making use of the fact that 
the number of zeros SR ( A )  of the polynomial DN(A) in the interval (A -SA, A )  equals the 
increase in the number of sign changes in the sequence {Dn(A)} as A increases from 
A -SA to A (Polozhii 1965). 

If this procedure is performed for both 9 and 9“’ (in our case the spectrum of 9c0) is 
known exactly) the resulting difference SAR(A,) = SR (A,)  - SR“’(A,) between the 
number of eigenvalues of 9 and 9“’ respectively in a given interval (A ,  - 6Am, A,) can 
be evaluated. For the calculation of the kink’s self-energy we shall need 

D1 (A) = U 1 - A 

Dn (A) = ( 4 n  - A ) D n  -1  (A) - Dn-AA) n = 2 , 3 . .  . N 

1’ SAR ( A m )  = -a 
m 

and 

SA,+O lim E’ , 6AR ( A m )  ln(2 - CAm) = -2 In b (12) 

where the prime denotes that summation is restricted to -4 <A, < 0 (‘phonon’ modes). 
In the continuum approximation it was possible to set SAR (A) = A p ( A ) S A  and relate the 
change in the phonon density of states A p  directly to the phonon phase shift. Such a 
connection does not appear to be possible in the discrete system. Thus, the main point 
of this letter is in fact to argue that, only because u ( C )  and b ( c )  exist and are well 
behaved in the displacive limit >> 1, is configurational phenomenology justifiable for 
the physically relevant case of a discrete lattice. 

Our numerical results summarised in table 1 indicate that this indeed is the case. 
Furthermore, the limiting values of a and b are equal within numerical accuracy to the 
continuum values. 

Table 1. Characteristics of the eigenvalue spectrum of the discrete ( N  = 200) d4 chain for 
C = 4, 16,64. The two eigenvalues for which A > 0 are listed separately. Results obtained 
in the continuum approximation are shown for the sake of comparison; in particular 
(In b),,, = -(27r)-’ J_”, (dq)b’(q) In n(q), where 6 ( q )  is the asymptotic phase shift for a 
phonon of wave vector q, and awns equals the number of bound states. The slightly negative 
values of 0: indicate the instability which characterises the approach of equation ( 5 )  to the 
true discrete kink solution (Currie el a1 1977). The length of the intervals SA, in equation 
(12) was chosen to satisfy M, < 10-2(2/c -A,,,),”. This yields an accuracy of better than 
0.5% for b. 

c = 4  c = 1 6  c = 6 4  Continuum 
~~ 

3 QZ 1.4755 1,4942 1.4986 s 
a: -0.0122 -0.0030 -0.0008 0 
U 2 2 2 2 
b/6 0.930 0.981 0,995 1 



L214 Letter to the Editor 

It is now possible to calculate the kink’s self-energy X, in the low-temperature 
regime PE: >> 1 according to the scheme put forward by Bishop (1978). Before doing 
this, however, we state the basic result of configurational phenomenology for the 
nonphonon part of the free energy density: 

(13) 

For the 94 system, where topology demands that a kink should be followed by an 
anti-kink and uice uersa, we obtain B = 2. This can be seen by a simple counting 
argument for a system of nK kinks and n; anti-kinks (n,,, = n3 + nK = const.). Of the 
total number of configurations 2”t0t, only one survives a given boundary condition; 
hence B = 2. 

(F -Fo)/L = (2E:/Bhwol)( 1/2?rPE~C)”* eXp[-P (E: + Z K ) ] ,  

The self-energy appearing in equation (13) is given in the discrete lattice case by 

X, = A F  + kBT ln(PhWOflL) (14) 

where 

= kBT[-a In(@ R o o )  +In b]. (15) 

Setting B = 2, flt = 9, a = 2 and b = 6, we may collect the results (13)-(15) and verify 
that equations (2) and (13) become identical. Configurational phenomenology is thus 
seen to reproduce the transfer integral result in the displacive limit without resort to the 
continuum approximation. 

The author would like to acknowledge valuable discussions with Dr A R Bishop, 
Professor R Klein and W Wunderlich. 
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